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ABSTRACT: Using a probabilistic risk-based framework, we have developed a simple predictive risk
threshold model for protecting the survival of farmed abalone, Haliotis diversicolor supertexta, exposed to
waterborne zinc (Zn). Probabilistic techniques using Monte Carlo analysis propagate parameter uncer-
tainty/variability throughout the model, providing decision makers with a credible range of information and
increased flexibility in establishing a specific Zn level in aquacultural ecosystems. We coupled a first-order
two-compartment bioaccumulation model with a reconstructed dose–response profile based on a three-
parameter Hill equation model to form a probabilistic risk model in order to determine the risk quotient
associated with a 10% probability of exceeding the abalone 5% effect concentration (EC5) at site-specific
abalone farms. Sensitivity analysis revealed that waterborne Zn concentration (Cw) and algae bioconcen-
tration factor (BCFa) have a significant effect on Zn levels in abalone. Using multiple nonlinear regression
analysis with Cw and BCFa as the parameters, a predictive risk threshold equation that can be used in a
variety of site-specific conditions was developed for protecting the survival of farmed abalone. We believe
this probabilistic framework provides an effective method for conceptualizing a public policy decision
vis-à-vis the establishment of a specific acceptable risk threshold for aquacultural water quality
management. ' 2005 Wiley Periodicals, Inc. Environ Toxicol 20: 202–211, 2005.
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INTRODUCTION

Zinc (Zn) is an essential micronutrient found at high levels

(50–120 �g g�1 dry wt) in the tissues of gastropod mollusks

(Lin and Liao, 1999; Richardson, 2001; Wang and Ke,

2002). Zinc is available to abalone both from the dissolved

phase (e.g., gill uptake) and from diet (e.g., algae ingestion).

If waterborne Zn levels are elevated, toxicity can occur,

which has severe effects on the health of abalone, resulting

in reduced market prices and the closure of abalone farms

(Hahn, 1989; Conroy et al., 1996; Knauer et al., 1997). Pre-

vious investigations indicated that Zn has been detected in

many rivers in that average Zn concentrations in aquaculture

waters were reported to range from 60 to 130 ng mL�1 in dif-

ferent areas of Taiwan (Lin and Liao, 1999; Liao et al.,

2002a). Because few previous studies have evaluated Zn tox-

icity to H. diversicolor supertexta, the mechanisms of how

Zn threatens survival and inhibits growth remain unknown.

In Taiwan abalone, Haliotis diversicolor supertexta, are
appreciated for their delicacy and thus have a high market

value. This makes H. diversicolor supertexta commercially

important to Taiwan’s aquaculture and the aquaculture of

H. diversicolor supertexta a promising business (http://

www.fa.gov.tw, 2001). However, the coastal regions of

Taiwan where the abalone farms situated are subjected to

polluted discharges from rivers.

Zinc was chosen for investigating for practical as well as

theoretical reasons, with the availability of a reasonable
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amount of suitable information the primary consideration.

Generally, the prerequisites for data suitability that we

require are exposure and whole-body Zn levels measured

by accepted analytical techniques. We consider experimen-

tal exposure data as acceptable only when whole-body con-

centration data are available and when the duration of

exposure is at least 14 days. Our previously published Zn-

abalone database conforms to this principle (Lin and Liao,

1999, 2001; Liao et al., 2002a, 2002b). On the other hand,

Zn was chosen in this study because it is representative of

metals that are of general concern about protecting the

environment. Future studies can investigate metals that

span the continuum from nutritionally essential to nones-

sential, such as cadmium or copper.

Janssen et al. (2000) and Bergman and Dorward-King

(1997) pointed out that neither total nor dissolved aqueous

metal concentrations are good predictors of metal bioavail-

ability and toxicity and are inadequate for the accurate

assessment of the potential impact of metals on the ecologi-

cal quality of ecosystems. Rather than develop a single-

value waterborne metal concentration for establishing water

quality criteria, it is better to derive a predictive risk thres-

hold model that explicitly incorporates the factors control-

ling bioavailability and bioaccumulation in aquacultural

ecosystems.

In the present work, we have developed a systematic and

quantitative risk-based framework that takes into account

site-specific water quality characteristics in order to derive

the risk thresholds for protecting the survival of farmed

abalone. A major complication in deriving a risk threshold

for aquacultural species is the high degree of uncertainty

resulting from the lack of dose–response information and

the large environmental variability in exposure among indi-

viduals (Liao et al., 2003; Liao and Ling, 2004). A better

approach would be to explicitly model the uncertainties

inherent in the risk (toxicity) threshold model for aquatic

species in that the output would be a distribution of possible

risk (toxicity) criteria for protecting the survival of abalone

from which the level of conservatism can be predicted. For

example, we can choose an appropriate risk criterion value

based on a 10% probability of exceeding the effect concen-

tration affecting 10% (EC10) of sensitive aquatic species as

suggested by the U.S. EPA (1995). Suggestions have been

made that the EC5 would be more protective of ecosystem

structure and function than would the EC10 or EC50 (van

der Hoeven, 1997; van der Hoeven et al., 1997; Moore and

Caux, 1997). Because H. diversicolor supertexta is commer-

cially important in Taiwan aquaculture and is sold at high

market prices, we chose EC5 as the threshold of Zn toxicity

for the mortality end point to derive the risk thresholds.

Our aim is to present a probabilistic risk-based approach

for deriving a predictive risk threshold for protection of the

survival of farmed abalone exposed to waterborne Zn. We

have demonstrated the utility of this approach by applying

it to real abalone farms using the methodology for water

quality criteria derivation developed by the U.S. EPA

(1995). The methodology that we adopted is an analysis

tool that couples probabilistic submodels of the bioaccumu-

lation process with the dose–response relationship in order

to arrive at a probabilistic risk model for determining a suit-

able Zn risk threshold for risk managers who prefer that a

risk threshold have a higher or lower level of protection.

MATERIALS AND METHODS

Our probabilistic risk-based approach is divided into five

phases (Fig. 1), which are described in the subsequent

sections.

Fig. 1. A conceptual algorithm describing the approach
phases of a probabilistic risk-based model to derive a
predictive risk threshold model for the survival protection of
farmed abalone (H. diversicolor supertexta) exposed to
waterborne Zn.
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Exposure Analysis

The major Zn exposure data was obtained from the pre-

vious studies conducted by Lin and Liao (1999) and Liao

et al. (2002a, 2002b, 2004). They chose three appropriate

management practices on abalone farms for three different

study sites: Toucheng, Kouhu, and Anping, in the northern,

central, and southern regions of Taiwan, respectively. They

measured Zn concentrations in pond water, algae, and the

soft tissue of abalone and conducted laboratory exposure

experiments in order to estimate essential biokinetic and

physiological parameters.

Zinc is accumulated in abalone both by dietary (i.e., red

algae, G. tenuistipitata var. liui) and nondietary (i.e., water

source) routes. If the dissolved Zn concentration in water is

assumed to be constant, whereas the Zn concentration in

algae is assumed to vary with time, the temporal change of

Zn concentration in abalone could be modeled using a first-

order two-compartment bioaccumulation model as

dCmðtÞ
dt

¼ �fCaðtÞ þ k1Cw � ðk2 þ gÞCmðtÞ; ð1Þ

where Cm(t) is the time-dependent Zn concentration in

abalone at time of day t (�g g�1 dry wt), Cw is the dissolved

Zn concentration in water (ng mL�1), Ca(t) is the time-

dependent Zn concentration in algae at time of day t
(�g g�1 dry wt), � is the assimilation efficiency of abalone

(%), f is the abalone grazing rate (g g�1 d�1), k1 is the

abalone uptake rate of Zn (mL g�1 d�1), k2 is the abalone

depuration rate (d�1), and g is the abalone growth rate (d�1).

Assuming that the initial Zn concentration is equal to zero in

algae, Ca(t) in Eq. (1) can be expressed as (Liao et al., 2004)

CaðtÞ ¼ BCFaCw

�
1� e�ðk2aþgaÞt�; ð2Þ

where BCFa ¼ k1a/(k2a þ ga) is the bioconcentration factor

of G. tenuistipitata var. liui for Zn (mL g�1), k2a is the algae
depuration rate of Zn (d�1), k1a is the algae uptake rate of

Zn (mL g�1 d�1), and ga is the algae growth rate (d
�1).

Eq. (1) is solved by substituting Eq. (2) into Eq. (1)

(Gross-Sorokin et al., 2003), obtaining

CmðtÞ ¼ �fGa

Ba � Bm

� ��
e�Bmt � e�Bat

�
þ �fGa

Bm

� ��
1� e�Bmt

�þ Gm

�
1� e�Bmt

�
; ð3Þ

where Gm ¼ BCFmCw, Ga ¼ BCFaCw, Bm ¼ k2 þ g, and
Ba ¼ k2a þ ga, in that BCFm ¼ k1/(k2 þ g) is the bioconcen-
tration factor of abalone for Zn (mL g�1).

Eq. (1) describes the gain and loss of Zn accumulation in

abalone featuring constant biokinetic and physiological rates

and a constant water concentration. The major processes in

Eqs. (1) and (2) were: (i) the exchange of Zn between

abalone and dissolved Zn was modeled as a first-order proc-

ess, with additional Zn accumulation from ingested algae;

(ii) abalone ingested only algae and neglected other sus-

pended particles, bacteria, and detritus uptake; (iii) tissue

concentration of Zn per unit biomass of abalone increased as

a result of direct uptake from water and through assimilation

of contaminated algae; and (iv) tissue concentration tended

to decrease as a result of elimination from the whole body

and of growth dilution. The input variables including bio-

kinetic parameters (k2, k2a, f, g, ga, �, BCFa, BCFm) and

geochemical variable of Cw were treated probabilistically in

estimating the Zn levels in abalone.

We performed a sensitivity analysis in order to identify

the most significant parameters that influence the level of

Zn accumulation in abalone. We assessed the sensitivity of

each variable relative to each other by calculating Spear-

man rank correlation coefficients between each input and

output during simulations and then estimating each input

contribution to the output variance by squaring the output

variance and normalizing to 100% (Zar, 1999). The results

of the sensitivity analysis can be used to derive a predictive

risk threshold model based on the combinations of the two

most sensitive parameters that have significant influence on

the Zn level in abalone.

Effect Analysis

The mortality responses in relation to Zn whole-body bur-

den in abalone were fitted using an empirical three-parame-

ter Hill equation model (Lalonde, 1992; Bourne, 1995)

based on published acute toxicity data and the relationship,

previously established by Liao et al. (2002b), between Zn

tissue residues and effects on mortality in abalone. In fitting

the Hill model to the observed mortality for specific-inter-

val acute toxicity data, the dose–response profile can be

expressed as (Liao et al., 2002b),

M ¼ 100� C3:70
w

ð24-h LC50Þ3:70 þ C3:70
w

; ð4Þ

where M is mortality (%), the exponent 3.70 is an average

value of the fitted Hill coefficient, and the 24-h LC50 is the

24-h median lethal concentration (mg L�1).

We appropriately transformed Eq. (4) to a tissue resi-

due–response relationship using the Hill model framework

to predict the response as (Liao et al., 2002b),

M ¼ 100� C3:70
m

ðCL50Þ3:70 þ C3:70
m

¼ 100� C3:70
m

ðBCFm � LC50ð1ÞÞ3:70 þ C3:70
m

; ð5Þ

where CL50 is the internal effect concentration at the site

of action that cause 50% mortality (�g g�1 dry wt), and
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LC50(?) is the incipient value of LC50 (mg L�1). We treated

BCFm and LC50(?) in Eq. (5) probabilistically. Applying

the Hill model, the cumulative distribution function (cdf) of

predicted mortality function for a given tissue Zn concen-

tration, F(M|C), could be expressed symbolically as a con-

ditional cdf,

FðM j CÞ ¼ �
100� C3:70

ðBCFm � LC50ð1ÞÞ3:70 þ C3:70

 !
; ð6Þ

where C is the given Zn concentration and F(l) is the

cumulative standard normal distribution. We used Eq. (6)

to estimate the distribution of EC5.

Risk Characterization

We used a probabilistic risk model to estimate risk thresh-

olds for the survival protection of farmed abalone exposed

to waterborne Zn for different combinations of the Zn bio-

accumulation parameters identified in sensitivity analysis

as having a significant influence on Zn levels in abalone.

We employed a risk quotient equation to estimate risk as

RQ ¼ Cm

EC5
; ð7Þ

where RQ is the risk quotient (unitless), Cm is the Zn con-

centration in abalone tissue (�g g�1 dry wt), and EC5 is the

effect concentration that produces 5% mortality in abalone.

If Cm were equal to EC5, then the RQ would be 1.0. Thus,

for RQ values greater than 1.0, some potential threat to sur-

vival can be inferred. RQ values less than 1.0 indicate that

the potential threat to survival is low. Cm and EC5 were

treated probabilistically in Eq. (7).

Derivation of Predictive Risk Threshold Model

For each combination of the two most significant bio-

kinetic/geochemical parameters identified from the sensi-

tivity analysis in the calculation of Zn level in abalone in

Eq. (3), a risk threshold could be determined that corre-

sponded with a 10% probability of exposure exceeding the

EC5 for farmed abalone. We used the Statistica1 software

package (StatSoft, Tulsa, OK, USA) to perform multiple

nonlinear regression to derive a predictive risk threshold

equation for abalone exposed to waterborne Zn that can be

used for any user-specified combination of those significant

parameters. The final multiple regression model predicting

risk threshold from biokinetic/geochemical variables was

the best combination of significant independent variables

(p ¶ 0.05), that is, the combination producing the highest

r2 value.

Model Parameterization

Parameterization of the model involved selecting data sets

and deriving input distributions. The current literature was

reviewed in order to develop probability distributions for

the random variables in the adopted bioaccumulation and

dose–response models. The source data of the input varia-

bles included in Eqs. (3) and (5) were obtained from pub-

lished studies by Chen (1984, 1989), Lee et al. (1996),

Chen and Lee (1999), Lin and Liao (1999), and Liao et al.

(2002a, 2002b, 2003). Data were sorted according to

reported statistical measure, for example, mean, standard

deviation, and standard error. Multiple sources of variabil-

ity and uncertainty need to be considered during distribu-

tion development for model input variables from measured

values. Therefore, data were log-transformed when neces-

sary to meet the assumptions of statistical normality. We

used the Statistica1 software package to analyze data and

distribution parameters. We used chi-square (w2) and

Kolmogorov–Smirnov (K-S) statistics to optimize the

goodness-of-fit of distributions (Zar, 1999). The imple-

mented parameter probability distributions are summarized

in Table I and will be described in subsequent sections.

Biokinetic Parameters (k2, k2a, �, f, g, ga,
BCFa, BCFm)

Distributions were fitted to polled lab- and field-derived

biokinetic data (k2, k2a, BCFa, BCFm) obtained from differ-

ent sources, and the selected lognormal distributions had

acceptable w2 fit and K-S fit in that optimizations using

either statistic yielded a geometric mean (gm) and geomet-

ric standard deviation (gsd) (Table I). We used a beta distri-

bution to describe assimilation efficiency of abalone (�)
because it is bounded by 0 and 1 (Table I). A normal distri-

bution was determined to provide the best fit for parameters

f, g, and ga (Table I).

Geochemical Parameter (Cw)

Distributions of waterborne Zn concentrations in the

abalone pond (Cw) were fitted to the polled field observa-

tions obtained from the three assigned abalone farm loca-

tions, and the selected lognormal distributions had optimal

K-S and w2 goodness-of-fit (Table I).

Dose–Response Parameters: [LC50(?)]

In applying dose–response relationships derived from the

experimental study, it is necessary to consider the limita-

tions of the data and account for the inherent uncertainty

that arises from a number of sources, including the limited

number of observations and limited sample size within

treatment sets. To account for this uncertainty, we con-

structed distributions for the input variables BCFm and

LC50(?) of the Hill dose–response function in Eq. (5). We

205PREDICTIVE RISK THRESHOLDS OF ZINC-EXPOSED ABALONE



determined normal distributions of LC50(?) (Table I) and

incorporated these distributions into the Monte Carlo simu-

lation in order to obtain the 2.5th and 97.5th percentiles as

the 95% confidence interval (CI) of the reconstructed dose–

response profile. Uncertainty and/or variability was not

considered for the reported Hill coefficient. This is unfortu-

nate but unavoidable because the Hill coefficient was

reported in the published study only as an average value.

Probabilistic Risk Model Parameter (EC5)

We parameterized a lognormal distribution for EC5 because

that variable was right-skewed with a lower bound of 0 and

no upper bound. We incorporated the distributions into the

Monte Carlo simulation in order to obtain the 2.5th and

97.5th percentiles as the 95% CI for EC5.

Monte Carlo Analysis

Uncertainty arises from estimation of both exposure and

effects. To quantify this uncertainty and its impact on the

estimation of expected risk, we implemented a Monte Carlo

simulation that included input distributions for the para-

meters of the derived dose–response function as well as for

estimated exposure parameters. To test the convergence

and stability of the numerical output, we performed inde-

pendent runs of 1000, 4000, 5000, and 10 000 iterations,

with each parameter sampled independently from the

appropriate distribution at the start of each replicate.

Largely because of limitations in the data used to derive

model parameters, inputs were assumed to be independent.

The result showed that running 5000 iterations was suffi-

cient to ensure the stability of results. The Monte Carlo

simulation was implemented with Crystal Ball1 software

(Version 2000.2, Decisioneering, Inc., Denver, CO, USA).

RESULTS

Results of Sensitivity Analyses and Validation

A comparison with the field observations showed that the

median estimates of Zn in abalone generally were below

the measured Zn values [Fig. 2(A)] of abalone subjected to

the site-specific Zn concentrations in pond water [Fig. 2(B)].

Three field observation data sets for selected abalone farms

of Zn in abalone were all within the predicted 25th- to

75th-percentile range [Fig. 2(A)]. The relative skewness

and spread in modeled output varied between water and

abalone; distributions of Zn levels in abalone were more

highly skewed, with a long tail at the higher concentration

present at the Toucheng abalone farm, indicating estimated

abalone Zn concentration had a higher uncertainty as quan-

TABLE I. Distributions of model input parameters used
in Monte Carlo simulations

Parameters

Uncertainty/

Variability Distribution

Field-derived biokinetic

parametersa

BCFa (mL g�1) U LN(635.362, 8.656)b

BCFm (mL g�1) U LN(264.053, 1.928)

Lab-derived biokinetic

parameters

k2 (d
�1)a U LN(0.390, 4.746)

k2a (d
�1)a U LN(0.556, 1.535)

f (g g�1 d�1)c V N(0.250, 0.050)d

g (d�1)e V N(0.004, 0.00012)

ga (d
�1)f V N(0.038, 0.013)

� (%)g V B(3.02, 4.06)h

Geochemical parametera

Cw (�g mL�1) U

Toucheng LN(0.127, 1.31)

Kouhu LN(0.055, 1.70)

Anping LN(0.059, 1.77)

Dose–response parameteri

LC50(?) (mg L�1) U N(1.080, 0.127)

aAdapted from Lin and Liao (1999).
bLN(gm, gsd) represents lognormal distribution with geometric mean

(gm) and geometric standard deviation (gsd).
cAdapted from Chen and Lee (1999).
dN(m, sd) represents normal distribution with mean (m) and standard

deviation (sd).
eAdapted from Liao et al. (2004) in that shell length range of 2–3.5 cm.
fAdapted from Lee et al. (1996).
gAdapted from Chen and Lee (1999).
hB(�, �) represents beta distribution with alpha and beta in that scale¼ 1.
iAdapted from Liao et al. (2002b).

Fig. 2. Box-and-whisker plot representations of distribution
of Zn in (A) abalone and (B) water at three selected abalone
farms. Box-and-whisker plots are used to represent the
uncertainty in Zn level estimates. [Color figure can be viewed
in the online issue, which is available at www.interscience.
wiley.com.]
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tified by the variance [i.e., output variability: geometric

standard deviation; Fig. 2(A)]. Thus, applying the Monte

Carlo technique to the proposed first-order two-compart-

ment bioaccumulation model generated probabilistic esti-

mates of Zn concentrations in abalone that were favorably

consistent with field data. Relative to minimum and maxi-

mum field data, however, the lower and upper probabilistic

percentile predictions were more conservative. This is evi-

dence that the probabilistic framework regarding the distri-

butional parameters and assumptions is appropriate for

estimating bioaccumulation of Zn in abalone.

The results of the sensitivity analyses are shown in the

form of a tornado plot illustrating the Spearman rank-

order correlation coefficients (Fig. 3). Sensitivity analyses

revealed that simulated Zn concentrations in abalone were

most sensitive to the algae bioconcentration factor, BCFa
(59%), and Zn waterborne concentration, Cw (43%), at

the Kouhu and Anping abalone farms, whereas they were

most sensitive to the BCFa (65%) and the abalone depu-

ration rate constant, k2 (�43%), at the Toucheng abalone

farm (Fig. 3). The most important factor in the overall

Zn abalone tissue concentration was the BCFa, which

showed considerable environmental variability, as indi-

cated in Table I, in that the lognormal distribution of

BCFa [i.e., LN(635.36 mL g�1, 8.66)] has a large geo-

metric standard deviation, 8.66. Because the depuration

rate constant, k2, is a lab-derived parameter and is not

easily estimated compared with the field-derived parame-

ters of BCFa and Cw, we determine a Cw–BCFa combina-

tion as the most significant independent variable in

abalone at the Zn level.

Risk Estimates in Abalone Farms

The Hill equation model and a 5000-iteration run of the

Monte Carlo simulation provided an adequate fit to the data

[w2 goodness-of-fit, P > 0.5; Fig. 4(A)]. In the present work,

we employed the more restricted regulatory endpoint EC5

as a surrogate threshold in probabilistic risk assessment.

The EC5 calculated from the fitted dose–response profile

[Fig. 4(A)] was 126.65 �g g�1 dry wt of whole-body

abalone, with a 95% CI of 33.21–487.63 �g g�1 dry wt. We

appropriately log-transformed the EC5 value and the results

in a lognormal distribution with a geometric mean of

127.24 �g g�1 dry wt and a geometric standard deviation of

1.98, that is, LN(127.24 �g g�1 dry wt, 1.98) [Fig. 4(B)].

We applied the probabilistic risk model in Eq. (7) to

three selected abalone farms, resulting in a probability of

exceeding EC5 of 36%, 21%, and 20%, respectively, for the

Toucheng, Kouhu, and Anping abalone farms, subjected to

RQ ¼ 1 [Fig. 5(A)]. The risk curves shown in Figure 5(A)

indicate the estimated probabilistic of effects of differing

magnitudes for abalone for each selected abalone farm

location. The plotted probabilities, calculated from the out-

come of the Monte Carlo simulation followed a probabilis-

tic risk model describing the exceedance cdfs [Fig. 5(A)]

associated with a particular degree of effect [Fig. 4(A)],

taking into account the uncertainty in estimating risk

derived from variability and the uncertainty in the model

parameters.

Figure 5(B) shows that for the Kouhu and Anping

abalone farms, a 75% probability or less of experiencing a

RQ less than 1 for abalone exposed to waterborne Zn, indi-

cating that these probability distributions are fairly accept-

able. In contrast, the 75th-percentile RQ was larger than 1

for the Toucheng abalone farm, indicating a conservative

Fig. 3. Sensitivity analysis of the Zn level in abalone at three
abalone farms: (A) Toucheng, (B) Kouhu, and (C) Anping.
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potential for threatening abalone survival was inferred

under the restricted EC5 value.

Site-Specific Predictive Risk Threshold
Equation

Risk thresholds were derived for each of 121 combinations

of Cw and BCFa (i.e., 11 � 11 Cw–BCFa combinations;

Table II). The Cw values considered ranged from 0.05 to

0.15 ng ml�1 in increments of 0.01, whereas the BCFa val-

ues considered ranged from 300 to 800 mL g�1 in incre-

ments of 50 (Table II). The list of possible independent

variables included Cw, BCFa, Cw � BCFa, log10 Cw, log10
BCFa, Cw

2, and BCFa
2. For each Cw–BCFa combination, dif-

ferent values were entered for risk threshold in an iterative

series of analyses until the probability of RQ > 1 (which

equals the probability that exposure would exceed the EC5

for abalone) was 10 6 0.3%, as suggested by Moore et al.

(2003). Then multiple nonlinear regression analysis was

performed to derive the risk thresholds equation, which can

be used for any user-specified Cw–BCFa combination. The

multiple regression analysis applied to determine the pre-

dictive risk threshold equation for the survival protection of

abalone exposed to waterborne Zn indicated that adding

input variables to the best four-variable (i.e., BCFa, log10
Cw, log10 BCFa, and Cw � BCFa) model produced no addi-

tional benefit of improving the r2 value.
Thus, the predictive risk threshold equation for the pro-

tection of abalone survival exposed to waterborne Zn can

be expressed as a best four-variable regression model with

an r2 of 0.993,

log10 RT ¼ �0:625þ 0:0004BCFa þ 0:653 log10 BCFa

þ 1:899 log10 Cw � 0:0043ðCw � BCFaÞ; ð8Þ

where RT is the risk threshold for protection of the survival

of abalone exposed to waterborne Zn. The graphical repre-

Fig. 4. (A) Reconstructed concentration–response profile
with 95% CI showing the relationships between abalone mor-
tality and Zn level in abalone. (B) Probability density distribu-
tion of effect concentration causing 5% mortality of abalone
(EC5) in that EC5 has a lognormal distribution with a geometric
mean of 127.24 �g g�1 dry wt and a geometric standard devi-
ation of 1.98. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]

Fig. 5. (A) Risk quotient distribution and (B) box-and-
whisker plots of risk quotient for three selected abalone
farms.
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sentation of Eq. (8) is shown in Figure 6, indicating surface

response of the effect of water Zn concentration (Cw) and

bioconcentration factor of algae (BCFa) for Zn on risk

thresholds for the protection of the survival of farmed

abalone under RQ ¼ 1.

DISCUSSION

Risk (Toxicity) Threshold for Farmed Abalone

In current ecological risk assessment or in developing the

criteria for the protection of wildlife there is a tendency to

rely on the deterministic approach of using a hazard quo-

tient (HQ), by which an effect concentration or a statisti-

cally derived no-observed-effect concentration (NOEC) or

a lowest-observed-effect concentration (LOEC) is divided

by an exposure concentration to determine if an effect

might be expected and subsequently to develop a toxicity

threshold for each selected species of concern (Suter, 1995;

U.S. EPA, 1995; Liao and Ling, 2004). One concern is that

the NOEC or LOEC is not representative of a concentration

at which no biologically significant effect is occurring.

More complex estimates of risk from exposure to contami-

nants for aquatic communities involve the use of probabilis-

tic ecological risk assessments (PERA) in that the methods

usually rely on EC50 or LC50 estimates (Ferrari et al., 2004;

Pennington et al., 2004). van der Hoeven et al. (1997) sug-

gested that if an ECx value is chosen to replace the NOEC,

the preferred value of x should be 5% or 10%.

In this work, a new method was developed to estimate

the risk (toxicity) threshold for aquacultural animals. The

method involved determining the EC5 of the mortality end

point from a reconstructed dose–response model for farmed

abalone. This threshold is the risk, or can be appropriately

transformed to a concentration following the proposed pre-

dictive risk threshold equation, at which no effects should

be observed for the mortality end point above that response

level. The thresholds and distributions then can be used as a

surrogate for the NOEC or LOEC in risk assessment techni-

ques, such as the HQ and PERA techniques. This new

method of estimating risk (toxicity) thresholds not only is

more realistic than the use of arbitrary uncertainty factors

but also is more conservative than current probabilistic risk

assessment methods. In our analysis, we used a model-based

approach to reconstruct a dose–response curve [Fig. 4(A)]

for farmed abalone in order to estimate the EC5 distribution.

The EC5 is considered attractive because this parameter is a

model-based value and the method is well established. We

believe that this to be a substantial improvement over reli-

ance on a single NOEC or LOEC for the development of

aquacultural water quality management. In our work, the

use of a probabilistic analysis allowed us to precisely state

TABLE II. Predictive risk thresholds for the protection of survival of abalone exposed to waterborne Zn

BCFa
(mL g�1)

Zn Concentration in Pond Water (�g mL�1)

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15

300 0.0428 0.0534 0.0606 0.0888 0.104 0.1302 0.1442 0.1598 0.1952 0.2112 0.2356

350 0.0424 0.054 0.0792 0.0976 0.1292 0.1388 0.1596 0.1862 0.2136 0.219 0.2488

400 0.045 0.0632 0.0836 0.111 0.1348 0.139 0.1738 0.205 0.2162 0.247 0.251

450 0.0516 0.0712 0.0988 0.1202 0.139 0.1546 0.1908 0.2172 0.2364 0.2508 0.2742

500 0.0562 0.0822 0.1064 0.134 0.1594 0.173 0.207 0.2206 0.2498 0.2748 0.2684

550 0.0674 0.0856 0.104 0.145 0.1538 0.1808 0.1954 0.2446 0.2544 0.2882 0.3102

600 0.078 0.0992 0.1246 0.1452 0.1646 0.1984 0.2264 0.2376 0.2664 0.2988 0.3212

650 0.0758 0.1024 0.123 0.1462 0.1696 0.1932 0.2278 0.2456 0.289 0.3046 0.3178

700 0.0918 0.1156 0.1322 0.1786 0.1882 0.2132 0.258 0.265 0.3048 0.3188 0.3318

750 0.0882 0.1212 0.1484 0.1628 0.1932 0.2182 0.2522 0.2684 0.2966 0.3296 0.3392

800 0.0924 0.1168 0.146 0.1732 0.2096 0.2404 0.2632 0.2884 0.3034 0.3282 0.3712

Fig. 6. Surface response plot of the algae bioconcentration
factor for Zn (BCFa) and Zn waterborne concentration (Cw)
on risk threshold for the survival protection of farmed
abalone exposed to waterborne Zn. The plot is the graphical
representation of the nonlinear regression equation, Eq. (8).
[Color figure can be viewed in the online issue, which is
available at www.interscience.wiley.com.]
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the level of protection that would be achieved if the risk

thresholds listed in Table II were adopted. The method is

easily adaptable if risk managers and the public desire a

level of protection that is more relaxed or more stringent.

Model Validation

Care should be taken when using this kind of empirical

regression equation for predicting risk thresholds in aquacul-

tural ecosystems: (1) the model should be used only for pre-

dictions in abalone pond water with water Zn concentration

and algae bioconcentration factor of Zn in the range of values

used to develop the models, and (2) it should be noted that in

some combinations, the model will yield meaningless, nega-

tive values of risk thresholds. Future research is necessary to

further elucidate the relations among water quality variables

where they have been shown to have consistent effects on

biovavilability, bioaccumulation, and/or toxicity (Morel and

Hering, 1993; Markert, 1997), and in the long run, the water

quality criteria should be expressed as functions that explic-

itly incorporate these variables. Furthermore, the influence

of water chemistry on abalone Zn accumulation will not be

precisely identical from one abalone farm to another. Varia-

tions in physical, geological, and biological/ecological fac-

tors prevent a precise replication of any particular regression

relationship (Lin and Liao, 1999; Tsai et al., 2004).

The use of field-derived data in risk assessment is advan-

tageous as it provides a more realistic estimate of toxicity

as normal degradation and partitioning of toxicants can

occur as compared to laboratory data, which can result in

an overestimation of adverse impacts. By combining the

field-derived parameters of Zn waterborne concentration and

algae bioconcentration factor of Zn for establishing a pre-

dictive risk threshold equation and using a modified PERA

or the estimated EC5 distribution in the calculation of an RQ,
the risk assessor can be more confident that the proposed

empirical regression model can be a simple first tool for reg-

ulatory applications until future research further verifies the

model. We believe that the nonlinear predictive risk thresh-

old model with explicit threshold effect performs better than

the HQ model. The applications of the proposed model to

real abalone farms has provided the greatest support for a

threshold relation among exceedence of metal criteria, the

results of ambient bioassay, and aquacultural ecosystems.

Implications

In this work, we used the PERA concepts to develop risk

threshold criteria in a more integrated and efficient process

in that we used probabilistic methods to establish less sub-

jective order-of-magnitude uncertainty factors in deriving

risk thresholds from limited empirical data. We also used

uncertainty analysis to estimate a concentration that would

provide a specified level of protection (e.g., 10% probability

of 95% aquacultural species survival) for high-market-pri-

ces aquacultural species. The results of field biomonitoring

or field validation studies of proposed risk thresholds

should be used as evidence of the appropriateness of the

proposed risk thresholds.

We believe that a probabilistic risk-based framework—

probability distributions and risk diagrams such as that

shown in Figure 5—is an effective representation of state-

of-the-art results of scientific assessments for aquacultural

species exposed to waterborne contaminants and has the

potential to be used in the establishment of water quality

criteria. To our knowledge, this risk-based framework has

not been addressed until now. Despite great uncertainty in

many aspects of integrated assessment, for example, the

problem of physical and chemical variables of water such

as temperature, pH, turbidity, oxygen level, that may mod-

ify water–metal concentrations, cautious interpretation of

observations obtained from optimized, controlled labora-

tory experiments can substantially reduce this likelihood.

Although the suitability and effectiveness of techniques

for presenting uncertain results is context dependent, we

believe that such probabilistic methods are more valuable

for communicating an accurate view of current scientific

knowledge to those seeking information for decision making

than are assessments that do not attempt to present results in

a probabilistic framework. We suggest that our probabilistic

framework and methods be taken seriously because they

produce general conclusions that are more robust than esti-

mates made with a limited set of scenarios or without proba-

bilistic presentations of outcomes, and our predictive risk

threshold modeling technique offers a risk-management

framework for discussion of the future in deriving ambient

water quality criteria for aquacultural ecosystems.
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